Copied to
clipboard

G = C522D8order 400 = 24·52

1st semidirect product of C52 and D8 acting via D8/C4=C22

metabelian, supersoluble, monomial

Aliases: C522D8, D202D5, C20.9D10, C4.8D52, C52(D4⋊D5), (C5×D20)⋊1C2, (C5×C10).6D4, C527C81C2, C10.7(C5⋊D4), (C5×C20).1C22, C2.3(C522D4), SmallGroup(400,64)

Series: Derived Chief Lower central Upper central

C1C5×C20 — C522D8
C1C5C52C5×C10C5×C20C5×D20 — C522D8
C52C5×C10C5×C20 — C522D8
C1C2C4

Generators and relations for C522D8
 G = < a,b,c,d | a5=b5=c8=d2=1, ab=ba, cac-1=a-1, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

20C2
20C2
2C5
2C5
10C22
10C22
2C10
2C10
4D5
4D5
20C10
20C10
5D4
5D4
25C8
2D10
2D10
2C20
2C20
10C2×C10
10C2×C10
4C5×D5
4C5×D5
25D8
5C5×D4
5C52C8
5C5×D4
5C52C8
10C52C8
10C52C8
2D5×C10
2D5×C10
5D4⋊D5
5D4⋊D5

Smallest permutation representation of C522D8
On 80 points
Generators in S80
(1 41 66 75 12)(2 13 76 67 42)(3 43 68 77 14)(4 15 78 69 44)(5 45 70 79 16)(6 9 80 71 46)(7 47 72 73 10)(8 11 74 65 48)(17 60 31 38 54)(18 55 39 32 61)(19 62 25 40 56)(20 49 33 26 63)(21 64 27 34 50)(22 51 35 28 57)(23 58 29 36 52)(24 53 37 30 59)
(1 66 12 41 75)(2 76 42 13 67)(3 68 14 43 77)(4 78 44 15 69)(5 70 16 45 79)(6 80 46 9 71)(7 72 10 47 73)(8 74 48 11 65)(17 38 60 54 31)(18 32 55 61 39)(19 40 62 56 25)(20 26 49 63 33)(21 34 64 50 27)(22 28 51 57 35)(23 36 58 52 29)(24 30 53 59 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 59)(2 58)(3 57)(4 64)(5 63)(6 62)(7 61)(8 60)(9 25)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)(17 48)(18 47)(19 46)(20 45)(21 44)(22 43)(23 42)(24 41)(33 79)(34 78)(35 77)(36 76)(37 75)(38 74)(39 73)(40 80)(49 70)(50 69)(51 68)(52 67)(53 66)(54 65)(55 72)(56 71)

G:=sub<Sym(80)| (1,41,66,75,12)(2,13,76,67,42)(3,43,68,77,14)(4,15,78,69,44)(5,45,70,79,16)(6,9,80,71,46)(7,47,72,73,10)(8,11,74,65,48)(17,60,31,38,54)(18,55,39,32,61)(19,62,25,40,56)(20,49,33,26,63)(21,64,27,34,50)(22,51,35,28,57)(23,58,29,36,52)(24,53,37,30,59), (1,66,12,41,75)(2,76,42,13,67)(3,68,14,43,77)(4,78,44,15,69)(5,70,16,45,79)(6,80,46,9,71)(7,72,10,47,73)(8,74,48,11,65)(17,38,60,54,31)(18,32,55,61,39)(19,40,62,56,25)(20,26,49,63,33)(21,34,64,50,27)(22,28,51,57,35)(23,36,58,52,29)(24,30,53,59,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,59)(2,58)(3,57)(4,64)(5,63)(6,62)(7,61)(8,60)(9,25)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,80)(49,70)(50,69)(51,68)(52,67)(53,66)(54,65)(55,72)(56,71)>;

G:=Group( (1,41,66,75,12)(2,13,76,67,42)(3,43,68,77,14)(4,15,78,69,44)(5,45,70,79,16)(6,9,80,71,46)(7,47,72,73,10)(8,11,74,65,48)(17,60,31,38,54)(18,55,39,32,61)(19,62,25,40,56)(20,49,33,26,63)(21,64,27,34,50)(22,51,35,28,57)(23,58,29,36,52)(24,53,37,30,59), (1,66,12,41,75)(2,76,42,13,67)(3,68,14,43,77)(4,78,44,15,69)(5,70,16,45,79)(6,80,46,9,71)(7,72,10,47,73)(8,74,48,11,65)(17,38,60,54,31)(18,32,55,61,39)(19,40,62,56,25)(20,26,49,63,33)(21,34,64,50,27)(22,28,51,57,35)(23,36,58,52,29)(24,30,53,59,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,59)(2,58)(3,57)(4,64)(5,63)(6,62)(7,61)(8,60)(9,25)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,80)(49,70)(50,69)(51,68)(52,67)(53,66)(54,65)(55,72)(56,71) );

G=PermutationGroup([[(1,41,66,75,12),(2,13,76,67,42),(3,43,68,77,14),(4,15,78,69,44),(5,45,70,79,16),(6,9,80,71,46),(7,47,72,73,10),(8,11,74,65,48),(17,60,31,38,54),(18,55,39,32,61),(19,62,25,40,56),(20,49,33,26,63),(21,64,27,34,50),(22,51,35,28,57),(23,58,29,36,52),(24,53,37,30,59)], [(1,66,12,41,75),(2,76,42,13,67),(3,68,14,43,77),(4,78,44,15,69),(5,70,16,45,79),(6,80,46,9,71),(7,72,10,47,73),(8,74,48,11,65),(17,38,60,54,31),(18,32,55,61,39),(19,40,62,56,25),(20,26,49,63,33),(21,34,64,50,27),(22,28,51,57,35),(23,36,58,52,29),(24,30,53,59,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,59),(2,58),(3,57),(4,64),(5,63),(6,62),(7,61),(8,60),(9,25),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26),(17,48),(18,47),(19,46),(20,45),(21,44),(22,43),(23,42),(24,41),(33,79),(34,78),(35,77),(36,76),(37,75),(38,74),(39,73),(40,80),(49,70),(50,69),(51,68),(52,67),(53,66),(54,65),(55,72),(56,71)]])

43 conjugacy classes

class 1 2A2B2C 4 5A5B5C5D5E5F5G5H8A8B10A10B10C10D10E10F10G10H10I···10P20A···20L
order122245555555588101010101010101010···1020···20
size11202022222444450502222444420···204···4

43 irreducible representations

dim111222224444
type+++++++++-
imageC1C2C2D4D5D8D10C5⋊D4D4⋊D5D52C522D4C522D8
kernelC522D8C527C8C5×D20C5×C10D20C52C20C10C5C4C2C1
# reps112142484448

Matrix representation of C522D8 in GL6(𝔽41)

100000
010000
0064000
001000
000010
000001
,
100000
010000
001000
000100
0000640
000010
,
39190000
26190000
0021500
00273900
000010
0000640
,
2880000
20130000
00183500
0062300
0000400
0000351

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,1,0,0,0,0,40,0],[39,26,0,0,0,0,19,19,0,0,0,0,0,0,2,27,0,0,0,0,15,39,0,0,0,0,0,0,1,6,0,0,0,0,0,40],[28,20,0,0,0,0,8,13,0,0,0,0,0,0,18,6,0,0,0,0,35,23,0,0,0,0,0,0,40,35,0,0,0,0,0,1] >;

C522D8 in GAP, Magma, Sage, TeX

C_5^2\rtimes_2D_8
% in TeX

G:=Group("C5^2:2D8");
// GroupNames label

G:=SmallGroup(400,64);
// by ID

G=gap.SmallGroup(400,64);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,73,218,116,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=d^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C522D8 in TeX

׿
×
𝔽